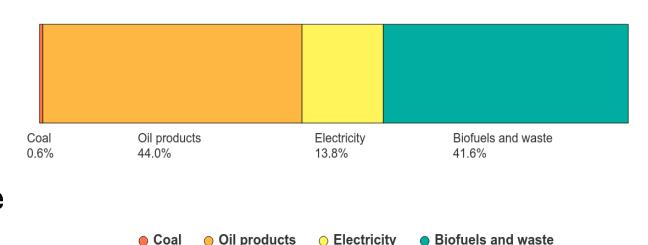

Sri Lanka – Decarbonization Strategy

Ceylon Chamber of Commerce and IITM Research Park

Strategy: Make Going Green financially viable


- Replacing use of fossil fuels with Green Electricity and enhancing energy efficiency
 - Will reduce GHG emissions
 - Will reduce pollution
- Equally important is to make each technology financially viable
 - such that its introduction will save money

- I. Convert fossil fuel usage to Electricity
 - a. Move transport to Electricity
 - b. Move heating and cooling (industry, commercial and domestic) to electricity and maximise energy efficiency
- II. Move Electricity generation to Green
 - a. Balance Supply and Demand using hydro, Storage and Grid
 - Connect Sri Lankan Grid to Indian Grid
- III. Reduce Cost of Energy Generation
- IV. Recycle Solar, Batteries and everything else
- V. Develop / acquire Technology and carry out local manufacturing
- VI. Nurture Sri Lanka young talent to carry out technology development

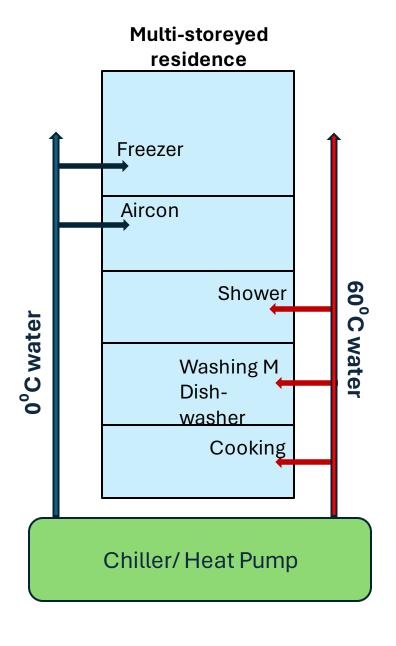
I. Converting fossil-fuel usage to Electricity

- Sri Lanka consumes 100 TWh of energy per year
 - About 45% from imported oil
 - Contributes significantly to Sri Lankan GHG emissions
 - Hurting Sri Lankan economy badly
- Can Energy Usage in Sri Lanka be converted to mostly Electricity?
 - Will this enhance energy efficiency?
 - Will this be economically viable?

Fossil Fuel (Coal, gas and oil) usage today

- Transportation
- Industry usage
 - Heating and Cooling
 - Direct use of coal, oil and gas: Fertiliser, cement, steel, glass, chemicals, plastic, tar, wax and others
 - IC engine for Construction and Industry
 - Lighting: already moved to electricity
 - Miscellaneous
- Cooking

Fossil Fuel -> Electricity Usage


- Low-cost fossil fuel has hurt use of electricity so far
 - R&D and Innovation required to drive Green Electricity Usage of energy to become financially viable
- Transportation and use of IC Engine
 - Electricity driven motors and controllers to replace IC engine
 - Will require energy storage (battery)
 - Technology available today: Costs rapidly coming down and becoming financially viable
 - Academia and R&D needs to continuously innovate to accelerate transition
 - Industry needs to commercialise technologies and drive change
 - Government must enable policy
 - Shifting transportation fully to electric can cut country's fossil import to half
 - Must shift Railways to electricity

Heating and Cooling

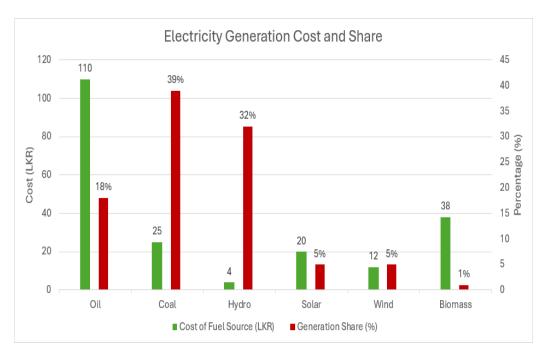
- Fossil based Heating dominant today: can we replace it by electric?
- Electricity can drive heating and cooling using Carnot Cycle
 - Significantly enhance energy-efficiency
 - Chillers can cool to sub-zero temperature using right refrigerant
 - Heat-pumps can provide up to 150°C heating today
 - Higher temperature Carnot engines under R&D
- Simultaneous use of Heating and Cooling will enhance energy efficiency significantly
- Higher temperature heating would need either electric arc-furnace or Green Hydrogen
 - R&D and Innovation can make it financially viable in next few years

District Heating and Cooling for homes and offices

- Heating and Cooling consumes 50% or world's energy
 - Fossil fuel based → highly inefficient
- Electric Heating/cooling: heat-pumps/chillers
 - 1 kWh electricity → 4 units of heat + 4 units of cooling (COP=8)
- Hot and Cold-water pipes can be taken to each flat
 - Cold water for refrigerator, freezer and air-con
 - Hot water for Shower, Washing machine, dishwasher and cooking
 - 60°C water will help reduce cooking energy
 - LPG cooking → induction stove

Cooking

- Gas dominates as cooking fuel today in South Asia
- Cooking using Induction stove highly efficient
 - But its costs will still not compete with subsidised gas-based cooking
- Hot water availability in kitchens using heat-pumps + inductionstove cooking will make electricity viable for cooking


Biofuels

- 40% of energy in Sri Lanka comes from Bio-fuels today
 - Need continuous nurturing
- Should explore use of Bio-Char

II. Move Electricity generation to Green

Currently, 60% of SL electricity is fossil based

- Electricity from Renewable energy in Sri Lanka costs less than that from fossil fuels
 - Fossil fuel increases import bills
 - Has significant GHG emissions
 - Solar PV Costs can be further reduced
- Renewable energy potential in Sri Lanka is around 163 GW
 - Solar = 16 GW
 - On-shore + off-shore wind = 147 GW

Matching Supply and Demand

- Solar and Wind-based electricity is not controllable
 - To match supply with demand, one would have to control other sources of electricity generation
 - Fortunately, Sri Lanka has large hydro-electric generation plants, which can be managed
 - Must also develop use of pumped hydro as storage
 - Develop Battery based energy storage
- Connect Sri Lanka Grid to South Asian Grid to assist in demandsupply management and enhance RE usage in sub-continent
 - Wind generation in South Asia increases significantly during certain months and would need larger grid and storage

III. Reduce Cost of Energy Generation

- Cost of Energy as well as Electricity in Sri Lanka is very high
 - Hurts its people
 - Hurts its industry and economy
- Fortunately, Green (solar, wind and hydro) electricity generation is lower than that from fossil-fuel
 - Similarly, use of Green electricity as energy instead of using fossil-fuel directly also reduces costs
- Si Lanka must accelerate usage of Green electricity to reduce cost of energy

IV. Recycle Solar, Batteries and everything else

- Technologies available today for complete recycling for batteries and solar panels
 - Possible to recover 90% to 95% raw material used and Reuse
 - Cost effectiveness can be further improved though innovations
 - Need streamlining of collections and processes so that every battery and solar panel are recycled
 - Policy could drive industry faster
- R&D and Innovations needed to help improve process and ensure full circular economy
 - Opportunity for Sri Lanka to recycle not just for itself but for the world
 - Will help overcome limited availability of materials in Sri Lanka

V. Develop / acquire Technology and carry out local manufacturing

- Large Markets needed to drive a new Technology: Sri Lanka should work towards a South Asia Strategy
- Sri Lanka should however be an important contributor to technology and not just be a market
 - In some technology area / subsystems, it should strive to become a player
- An eco-system of Industry Academia Startups Collaboration would accelerate this
 - IITM Research Park is an example

VI. Nurture Young talent to carry out technology development

- 400K youngsters in Sri Lanka turns 22 every year
 - They must be inspired to take up the development of Green Sri Lanka
 - Higher Education must focus on making them creative and innovative
- Possible to train and motivate them to master technologies
 - Create environment for entrepreneurship and innovation
 - Right eco-system of Startups, Industry and Academia
 - Collaborate extensively with similar organisations in India and South Asia
- South Asia can become Technology and Innovation hub for the world

To Sum Up

- Aggressive adoption of Green Energy would benefit Sri Lanka
 - Will benefit its economy
 - Could help its industry grow rapidly
 - Could inspire and enable youngsters in Sri Lanka

Technologies towards Net - Zero		
Domestic	Industry / Commercial	Transport
Rene		
	Green Hydrogen Production	Electrification of 2, 3 and 4 -wheelers
Heat Pumps & Chillers		Retrofitting & EV charger infrastructure
Energy (Demand – Supply) management and Energy Storage: Pumped-hydro, Batteries and Thermal Storage		
	Electrification of construction equipment	
Sustainable Construction Materials		

Thank You!